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Abstract: Linear Quadratic optimal controller (LQ) can be used in the positional and incremental 

form. This article deals with the comparison of the robustness against parameters deviations of the 

regulated system with firmly set up LQ controllers in the positional and incremental form. The sen-

sitivity analysis was used for this comparison. The article also contains the deduction of effective 

calculations of the sensitivity function and the simulations results. 
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1. INTRODUCTION 

Robustness against parameters changes of the system is important for the regulation with fixed con-

troller. The same demand can be applied for the adaptive control with on-line identification of this 

regulated system. If there appears a quick change of dynamic parameters then it is necessary to 

overcome the time during which the on-line identification does not provide sufficiently exact mod-

el. One of the possible solutions can be to let the controller set up on the same parameters and wait 

for sufficiently exact system model. Adaptive and fixed controllers are equivalent during this time.  

Linear Quadratic optimal controller (LQ) can be used in the positional and incremental form. This 

article deals with the comparison of the robustness against parameters deviations of the regulated 

system with firmly set up LQ controllers in the positional and incremental form. The sensitivity 

analysis was used for this comparison. The article also contains the deduction of effective calcula-

tions of the sensitivity function and the simulations results. 

2.  STATE SPACE REPREZENTATION AND CONTROL LAW 

2.1. PSEUDO STATE SPACE REPREZENTATION 

Pseudo state space representation is used for discrete dynamic systems. State space vector is com-

posed of delayed values of input and output control system. State space equations can be found for 

example in [3]. State space representation uses the parameters of transfer function. This vector can 

have the form (2.2). Transfer function of the same system is in the form (2.1). 
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This reprezentation has all state variables measurable. This is great advantage. 



2.2. STATE SPACE REPRESENTATION OF SYSTEM 

State equations have for position controller the form (2.3)  
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where  (   ) is the vector of state variables in step  ,  ( ) is system input,   (   ) is system 

output and   is parameter vector in the form (2.2). State equations have for incremental controller 

the form (2.4)  
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where 
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If  ( ) is the zero matrix, then we can use the equation (2.6) for both forms. 
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2.3. LINEAR QUADRATIC OPTIMAL CONTROLLER 

Discrete Linear Quadratic (LQ) optimal controller is state controller. Parameters of the discrete LQ 

controller are determined by minimizing the quadratic criterion for linear time-invariant systems. 

This criterion is in the form (2.7) 
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where positive semidefinite matrix Q scales deviations of state variables   ( ) and positive definite 

matrix R scales control energy. The feedback matrix   is the result of minimizing the value of the 

criterial function (2.7). The matrix   is solving by equation (2.8). 
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where 
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The control law is given by (2.10). 

  ( )      ( ) (2.10) 

If the matrix is without depending on the vector  , then the matrix contains the parameters  ̂. These 

parameters are used for design of controller parameters. LQ control and solution of the equation 

(2.9) can be found in [1,2]. 



3. SENSITIVITY FUNCTION 

Sensitivity analysis was used to verify the robustness of LQ controllers in the position and the in-

cremental form. It was necessary to deduce sensitivity function. This function defines the relation-

ship between the change of parameters   and the value of criterial function  ( ) in the form (2.7). 

The derivation assumes the following: the parameters are constant during control (constant devia-

tions), controllers are fixed. Approximation of the sensitivity function can be defined by (3.1) 
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where   ( ) is deviation of the value of criterial function and     is deviation of the j-th parame-

ter. If we use relations (2.10) and (2.6), then the first equation has the form (3.2). 
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Partial derivatives of criterial function (2.7) according to the j-th parameter is given by equation 

(3.3). 
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Partial derivative of   (     ) according to the j-th parameter is given by equation (3.4). 
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If we use equation (2.6) and (2.10), then we obtain an autonomous dynamical system with the first 

state equation in the form (3.5) 
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with initial condition (3.6). 
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Furthermore, we introduce the substitution (3.7) 
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where   is the identity matrix and 0 is zero matrix. Both matrices are square. Their dimensions are 

equal as dimension matrix    ( ). Now we can rewrite equation (3.3) to form (3.8). 
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or 
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where 

  ( )     
 ( )  ( ) ( )  (3.10) 

Equation (3.10) has the same form as equation (2.9). Methods of solving equation (3.10) can be 

found in [1,2,3]. 

4. SIMULATION RESULTS 

Transfer function of the system was assumed in the form (4.1). 
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Every simulation consisted of the following: 

The parameters   ,   and gain    were set to       ,     and      . The system was dis-

cretized. Controller parameters were set to this system and the criterial function was calculated by 

(2.7). Furthermore, parameters have been changed, the system was discretized and the value of the 

deviation parameter was calculated. Further deviation criterial function was calculated by (3.1). In 

conclusion, change in the relative value of criterial function was calculated according to equation 

(4.2) 
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where  ̂  is a parameter vector, to which the controller was designed. The sampling period was set 

to 0.1s. The parameter R was set to one. Matrix Q was zero matrix, except the coefficient     . Its 

value was set to one. Vector (4.3) was chosen as an initial condition for the LQ controller in posi-

tional form. Vector (4.4) was chosen as an initial condition for the LQ controller in incremental 

form. 
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Table 4.1 contains the results. In all cases, the controller in the form of incremental changes 

reached a lower relative deviation of the criterial function. The results show that the LQ controller 

in incremental form is more robust in particular changes in the time constant of the system. 



 

#   Ks T [s]              [ ]            [ ]

1 1,0 10,0 100 0,00 0,00 

2 1,0 10,0 105 3,66 5,49 

3 1,0 10,0 110 8,16 11,99 

4 0,5 10,0 105 4,37 7,92 

5 0,5 10,0 110 9,41 16,43 

6 1,0 10,5 100 1,48 2,29 

7 1,0 11,0 100 2,72 4,27 

8 0,5 10,5 100 1,29 1,76 

9 0,5 11,0 100 2,61 3,98 

 Table 4.1 Simulation results 

5. CONCLUSION 

This work dealt with the robustness of firmly set up LQ controllers. The aim of the work was also 

the carry out the comparison of controller robustness in the positional and incremental form. Rela-

tive change of the value of criterial function was used as the measure for this comparison. The sen-

sitivity analysis was used for these comparisons. For its usage there was necessary to deduct the ef-

ficient calculation of sensitivity function, the final calculation of sensitivity function can be per-

formed by using the relations (3.1), (3.5), (3.7), (3.9) a (3.10). 

When watching these simulated results it is apparent that for changes of both time constants and for 

strengthening the system the relative value gained the value of criterial function which had after-

wards significantly lower value from the increasing module. This phenomenon was mostly appar-

ent for changes of the time constant. LQ controller in the incremental form reached a lower value 

of relative changes in test functions. 
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